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SUMMARY

This paper presents two-dimensional and unsteady RANS computations of time dependent, periodic,
turbulent flow around a square block. Two turbulence models are used: the Launder–Sharma low-Reynolds
number k–� model and a non-linear extension sensitive to the anisotropy of turbulence. The Reynolds
number based on the free stream velocity and obstacle side is Re=2.2×104. The present numerical results
have been obtained using a finite volume code that solves the governing equations in a vertical plane,
located at the lateral mid-point of the channel. The pressure field is obtained with the SIMPLE algorithm.
A bounded version of the third-order QUICK scheme is used for the convective terms. Comparisons
of the numerical results with the experimental data indicate that a preliminary steady solution of the
governing equations using the linear k–� does not lead to correct flow field predictions in the wake
region downstream of the square cylinder. Consequently, the time derivatives of dependent variables are
included in the transport equations and are discretized using the second-order Crank–Nicolson scheme.
The unsteady computations using the linear and non-linear k–� models significantly improve the velocity
field predictions. However, the linear k–� shows a number of predictive deficiencies, even in unsteady
flow computations, especially in the prediction of the turbulence field. The introduction of a non-linear
k–� model brings the two-dimensional unsteady predictions of the time-averaged velocity and turbulence
fields and also the predicted values of the global parameters such as the Strouhal number and the drag
coefficient to close agreement with the data. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Turbulent flow around bluff bodies has been attracting increasing attention not only because of
its academic attractiveness, but also due to the relevant practical concerns associated with energy
conservation and structural design. For instance, fuel consumption of aircrafts and vehicles can
be decreased by reducing the aerodynamic drag and multi-story buildings and towers should
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be designed in a way that avoids potentially disastrous wind-induced oscillations. Flow around
a rectangular (or square) cylinder, confined in a channel, or subjected to the free-stream flow,
is a basic geometry for studying flow around bluff body configurations. In such flows, various
complex physical phenomena, including flow separation, reattachment, recirculation, and vortex
shedding occur. Consequently, the interaction of these features produces a very challenging flow
for experimentalists as well as CFD practitioners.

Over the last three decades, numerous experimental and numerical studies have been conducted
to advance our understanding of different physical processes occurring in flow past a square
cylinder. In these studies, the principal objective has mostly been to measure and/or to calculate
the field variables and the related quantities from which to determine the drag and lift coefficients,
as well as Strouhal and Nusselt numbers, the latter in cases where heat transfer also takes place.
Some of these studies are reviewed here.

A number of investigations examined the effect of the angle of approach on the characteristics
of flow around an obstacle. One of the earliest works is that reported by Lee [1] who conducted
an experimental study to measure mean and fluctuating pressure fields for flow around a square
cylinder in both uniform and turbulent flows at a Reynolds number of 1.8×105. Lee observed that
when the cylinder was rotated with respect to the main stream direction, the vortex formation region
moved downstream causing the drag to decrease. A minimum value of the drag coefficient was
reached at an angle of incidence of about 15◦. Further rotation of the cylinder produced a gradual
increase in the drag coefficient as the vortex formation region moved upstream after the flow had
reattached to the side wall. Lee also observed that the Strouhal number increased to a maximum
at the angle at which the mean drag reached its minimum level. Later, Knisely [2] experimentally
determined Strouhal numbers for a family of rectangular cylinders with aspect ratios ranging from
0.04 to 1 and flow angles of approach from 0◦ to 90◦. Measurements were conducted in both a
water channel with Reynolds numbers between 7.2×102 and 3.1×104 and in a wind tunnel with
Reynolds numbers between 8.8×103 and 8.1×104. They found qualitatively similar behavior for
Strouhal number with changing angle of approach for all aspect ratios examined, except for the
lowest (thinnest plate). Norberg [3] studied the flow around rectangular cylinders and measured
pressure forces at the angles of approach from 0◦ to 90◦. In this investigation the Reynolds number
was varied from 4.0×102 to 3.0×104. The results of this investigation showed a large influence of
flow angle of approach on the flow structure due to reattachment and shear layer/edge interactions.

The effects of obstacle aspect ratio have been the topic of a number of experimental studies.
Bearman and Trueman [4] conducted flow visualization studies of turbulent flow around rectangular
cylinders for Reynolds numbers between Re=2.0×104 and Re=7.0×104 and presented detailed
measurements for pressure, mean drag force, and shedding frequency. Among the rectangular
cylinders examined, the maximum value of the drag coefficient occurred for a rectangular cylinder
with an aspect ratio of 0.62. One of the most extensive experimental attempts to map out the
flow characteristics around the rectangular cylinders was presented by Okajima et al. [5]. They
determined Strouhal numbers for flow around rectangular cylinders with aspect ratios of 1–4 and
Reynolds numbers between 7.0×101 and 2.0×104. For rectangular cylinders (aspect ratios of 2
and 3), they found a range of critical Reynolds numbers where flow patterns abruptly change with
a sudden discontinuity in Strouhal number. The general tendency is a rapid rise in the Strouhal
number, which occurs at relatively small angles of approach. The authors argued that the rapid rise
is associated with reattachment of the separated shear layer. Lyn and Rodi [6] and Lyn et al. [7],
using LDV, measured velocity components and turbulence quantities for turbulent flow around a
square cylinder at Re=2.2×104. Phase (ensemble)-averaged velocity and turbulence intensities
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were presented in various locations along the top surface of the obstacle as well as within the
wake region downstream of the obstacle.

On the whole, it can be concluded that unsteady flow around rectangular cylinders is a very
complex flow. On account of this complexity, the experimental data may be used in the CFD code
validation to examine not only the capabilities of numerical schemes, but also to investigate the
performance of the turbulence models. In recent years, unsteady flow around square cylinders has
been the subject of several numerical investigations. One of the first numerical attempts to model the
unsteady flow around an obstacle at low-Reynolds numbers was reported by Fromm and Harlow [8].
They studied the development of the vortex street behind a plate which has impulsively accelerated
to a constant speed in a channel of finite width. In their study, the Reynolds number ranged between
Re=1.5×101 and Re=6.0×103; however, only a few results were presented in their paper. Davis
et al. [9] numerically investigated the effects of channel walls on flow around a square cylinder
confined in a channel. They concluded that the presence of walls can significantly change the flow
characteristics and increases both the drag coefficient and Strouhal number. Tamura and Kuwahara
[10] numerically investigated the aerodynamics behavior of flow around a cylinder placed in a
uniform stream at high-Reynolds numbers. They obtained numerical solutions for unsteady flow
for various test cases by employing the 2-D and 3-D incompressible Navier–Stokes equations
in a generalized coordinate system. No turbulence models were employed in their computations
and the convective terms were approximated using the upwind scheme. They found that the flow
patterns obtained by 2-D predictions had significant differences from those returned by the 3-D
computations. Moreover, the computational results revealed that 3-D flow structures decrease both
the drag coefficient and the lift amplitude. Hence, the authors concluded that the 3-D computational
results are closer to the experimental data than the 2-D results. Kawamura and Kawashima [11],
using a low-Reynolds number k–� model, examined unsteady turbulent flow around a square
cylinder confined in a channel. They compared their numerical results at Re=2.2×104 with the
experimental data of Lyn et al. [7]. The calculated turbulence levels behind the cylinder were
significantly lower than those of the experimental data. However, the predicted Strouhal number
and drag coefficient and also the phase-averaged velocity profiles were in satisfactory agreement
with the measured data. Sohankar et al. [12] numerically studied flow around a square obstacle
at a range of Reynolds number between Re=4.5×101 and Re=2.5×102. They found that the
results strongly depended on the time step, computational grid, cell size, domain size, and blockage
ratio. Decreasing the time step from 0.025 to 0.02 gave an increase of 1.5% in the root-mean
square (RMS) lift, but with a time step of 0.05 the RMS lift decreased by 11.5%. Decreasing the
size of the cell near the wall from 0.004 to 0.001 did not change the results significantly. When
increasing the xu/D (extent of domain upstream of the square cylinder) from 7.5 to 11.1 the
RMS lift decreased by 9.3%. A further increase up to xu/D=18.3 resulted in negligible changes.
Richmond-Bryant [13] presented a numerical work providing a verification study of Reynolds-
averaged Navier–Stokes (RANS) methods for the problem of airflow past a circular cylinder at
Re=5232. She examined the standard and renormalized group (RNG) versions of the k–� model,
along with the Boussinesq [14] and Craft et al. [15] stress strain-rate relation. Verification testing
with the standard and RNG k–� models suggested that the simulations exhibited global monotonic
convergence for the Boussinesq models. However, the global order of accuracy of the methods was
much lower than the expected order of accuracy of two. Poor iterative and global grid convergence
was found for the RNG k–� model with Craft et al. [15] stress strain-rate relation.

Bosch and Rodi [16] utilized the standard and Kato and Launder [17] modified high-Reynolds
number two-equation k–� models to numerically solve the turbulent flow around a square cylinder
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at Reynolds number of 22 000 and compared their predictions with experimental data of Lyn et al.
[7]. It should be noted that the main feature of the Kato–Launder k–� is an ad hoc modification
to the generation rate term of the turbulent kinetic energy, which, compensating for the known
weakness of the effective-viscosity approximation, reduces the generation rate at the stagnation
point region. To resolve the viscous effected near-wall regions, they employed the wall-function
approach and the one-equation turbulence model. The results of their calculations showed that the
Kato–Launder model produced better predictions for the drag and lift coefficients and Strouhal
number in comparison with those of the standard model. Younis and Przulj [18] compared the
results of the RNG, standard and one modified k–� models with experimental results in vortex
shedding around a square and circular cylinders. They also employed the one-equation model in
near-wall regions. They found that the modified model produces results that are in close agreement
with the measurements, especially for the RMS values of the drag and lift coefficients. The RNG
model underestimates the mean and RMS values of the drag coefficient, as well as the length of
the recirculation zone. Saha et al. [19] also studied the turbulent unsteady wake behind a square
cylinder with the standard, Kato–Launder, and RNG k–� models. By comparing the time-averaged
velocities at some locations and the kinetic energy of the fluctuations that were obtained by
using these models, they showed that the best predictions are those of the Kato–Launder model.
Some studies also used the large eddy simulation (LES) as well as RANS to obtain the turbulent
vortex-shedding flow around a square cylinder. For example, Rodi [20] presented a comparison
of RANS and LES calculations of the flow around bluff bodies—a 2D square cylinder at Re=
22000 and a surface mounted cube at Re=40000. He reported results from RANS calculations
obtained with various versions of the k–� model and LES ones presented in a workshop. From the
comparisons he concluded that in all RANS calculations, the turbulence fluctuations are severely
underpredicted. However, the Kato–Launder modification combined with the two-layer approach
improved the results. In general, LES seemed to give a better representation of the details of
the flow.

The preceding numerical studies appear to suggest that when it comes to the application of 2-D
unsteady RANS (URANS) the variants of the effective-viscosity k–� tested have been shown to
be only partially successful in predicting the measured time-averaged features of unsteady flows
behind square cylinders. The most successful variant, the Kato–Launder, is one that tries in an
ad hoc way to compensate for one of the weaknesses of the effective-viscosity approach. These
comparisons inevitably suggest that the turbulence models that account for the effects of turbulence
anisotropy in a manner more rigorous than the Kato–Launder variant need to be tested in 2-D
URANS computations of such flows.

The objective of this study is to further pursue the two-dimensional unsteady RANS approach,
as the route to the prediction of these oscillatory wake flows, because of the computational savings
it offers in comparison with LES, or even three-dimensional URANS. Two turbulence models are
tested, both of which are low-Reynolds number models. The Launder–Sharma [21] linear k–� is
first tested, which has been in use for several decades and has been applied to the computation of
a variety of flows. Then in order to be able to take into account the effects of the anisotropy of
the turbulence field, a non-linear version of the k–� model, due to Craft et al. [22] have also been
employed. In the latter, the elements of the Reynolds stress tensor are obtained from algebraic
expressions, which are cubic in terms of the strain-rate tensor and as a result of which the anisotropy
of the turbulence is more faithfully reproduced. Our earlier research effort (Raisee et al. [23, 24]
and Craft et al. [25] show that this model has a good track record in predicting complex and
unsteady flows.
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2. PROBLEM DESCRIPTION

Figure 1 shows the geometry of the flow investigated in this study. The computational domain
consists of a square cylinder of length-side D and blockage ratio (�=D/H) of 0.07, which is
located in the middle of the channel. In the relevant experimental work of Lyn et al. [7], the
channel height was chosen as H =14D to remove the effects of channel walls on the flow field.
Also, the channel side along the lateral direction was long. Thus, the three-dimensional effects
due to side walls may be ignored and computations may be performed in two dimensions. The
distances of the obstacle center from the inlet and outlet planes of the channel are set to 4.5D
and 14D, respectively. The Reynolds number based on inlet velocity (Uin) and obstacle side (D)
is 2.2×104. The available experimental data for this geometry are time-averaged velocity and
turbulence intensity profiles, which were measured using LDV.

3. GOVERNING EQUATIONS

For an unsteady, Newtonian, and incompressible flow, the conservation laws of mass and momentum
obtained with the ensemble averaging are written as:

Continuity:

�Uj

�x j
=0 (1)

Momentum:

�Ui

�t
+ �(UiU j )

�x j
=−1

�

�P
�xi

+ �
�x j

(
�
�Ui

�x j
−uiu j

)
(2)

Figure 1. Flow configuration investigated (�=7% and Re=2.2×104).
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where P is the pressure, Ui denotes the mean velocity vector, and uiu j are the unknown Reynolds
stress tensor.

4. TURBULENCE MODELING

The turbulence models employed for computations are the low-Re Launder and Sharma [21] k–�
model, and a modified version of non-linear low-Re k–� model [22].

4.1. Linear low-Re k–� model, Launder and Sharma [21]
This model is an extension of high-Reynolds k–� model that accounts for the wall damping of
turbulence and hence can be used across the viscous sublayer. In this turbulence model, the
Reynolds stresses are obtained via the Boussinesq hypothesis [14], shown below, which result in
largely isotropic normal stresses, since |�t (�U/�x)|=|�t (�V/�y)|� 2

3 k.

uiu j = 2

3
k�i j −�t

(
�Ui

�x j
+ �Uj

�xi

)
(3)

where k is the turbulent kinetic energy.
The turbulent viscosity is obtained from the following equation:

�t =C�f�
k2

�̃
(4)

where C� coefficient is given in Table I and �̃ is the dissipation rate of turbulent kinetic energy.
The distributions of turbulent kinetic energy (k) and homogeneous dissipation rate (�̃) are

obtained by solving the following transport equations:

Dk

Dt
= �

�x j

[(
�+ �t

�k

)
�k
�x j

]
+Pk− �̃−2�

(
�
√
k

�x j

)2

(5)

D�̃

Dt
= �

�x j

[(
�+ �t

��

)
��̃

�x j

]
+ f1c�1

�̃

k
Pk− f2c�2

�̃2

k
+E+S� (6)

where variable �̃ can be related to the real dissipation rate, �, through:

�̃=�−2�

[
�
√
k

�x j

]2
(7)

Table I. Empirical constants for the linear low-Reynolds number k–� model.

c� c�1 c�2 �k �� �	

0.09 1.44 1.92 1.0 1.3 0.9
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The turbulent kinetic energy production term, Pk , is given by:

Pk =−uiu j
�Ui

�x j
(8)

The damping functions f1, f2, and f� have the following expressions:

f1=1, f2=1−0.3exp(−R̃2
t ), f� =exp[−3.4/(1+0.02R̃t )

2] (9)

where R̃t =k2/��̃ is the local turbulent Reynolds number.
The constants in the turbulent kinetic energy and the dissipation rate equations are given in

Table I.
The E term was first introduced by Jones and Launder [26] and is expressed as:

E=2��t

(
�2Ui

�x j �xi

)2

(10)

The extra source term, S�, stands for the ‘Yap’ correction term that is discussed in the later sections.

4.2. Non-linear low-Re k–� model, Craft et al. [22]
In this turbulence model, turbulent stresses are obtained via the constitutive relation below, which
is cubic in terms of the strain rate, and as result is able to return an anisotropic turbulence field.

uiu j = 2

3
k�i j −�t Si j +c1

�t k

�̃

(
Sik Sk j − 1

3
Skl Skl�i j

)

+c2
�t k

�̃
(�ik Sk j +� jk Ski )+c3

�t k

�̃

(
�ik� jk− 1

3
�lk�lk�i j

)

+c4
�t k2

�̃2
(Ski�l j +Sk j�li ) Skl +c5

�t k2

�̃2

(
�il�lm Smj +Sil�lm�mj − 2

3
Slm�mn�nl�i j

)

+c6
�t k2

�̃2
Si j Skl Skl +c7

�t k2

�̃2
Si j�kl�kl (11)

where Si j and �i j are strain and vorticity rate tensors:

Si j =
(

�Ui

�x j
+ �Uj

�xi

)
, �i j =

(
�Ui

�x j
− �Uj

�xi

)
(12)

The model coefficients, c1–c7, have been calibrated by Craft et al. [22], by reference to several
flows, including homogeneous shear flows, swirling flows, and curved channel flows. The values
of these coefficients are given in Table II.

The k and �̃ transport equations and eddy-viscosity formulation are similar to those of linear
model, however, for modeling of c� the following expression was proposed by Craft et al. [27].

c� =min

[
0.09,

1.2

1+3.5
+ fRS

]
(13)
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Table II. Values of coefficients in the non-linear k–� model.

c1 c2 c3 c4 c5 c6 c7

−0.1 0.1 0.26 −10c2� 0 −5c2� 5c2�

with


=max(S̃, �̃) (14)

where the strain and vorticity invariants are expressed as:

S̃= k

�̃

√
0.5 Si j Si j , �̃= k

�̃

√
0.5�i j�i j (15)

and

fRS =0.235[max(0,
−3.333)]2 exp(−R̃t/400) (16)

The viscous damping function of �t is provided by the function f�:

f� =1−exp

⎧⎨
⎩−

(
R̃t

90

)1/2

−
(

R̃t

400

)2
⎫⎬
⎭ (17)

The near-wall source term E is now expressed as:

E=

⎧⎪⎪⎨
⎪⎪⎩
0.0022

S̃�t k2

�̃

(
�2Ui

�x j �xk

)2

, R̃t�250

0, R̃t>250

(18)

Length-scale correction term: It is well known that, as demonstrated by Yap [28], in separated
flows, the Launder and Sharma version of �̃-equation returns excessively high levels of near-wall
turbulence. To address this problem, Yap [28] introduced an extra source term into the dissipation
rate equation, ‘Yap’, based on the wall distance, yw.

S� =Yap=0.83
�̃2

k
max[(�/�e−1)(�/�e)

2,0] (19)

where � is the turbulent length scale k3/2/�̃, the equilibrium length scale �e=2.55yw, and yw is
the distance to the wall.

To eliminate the dependence of the above source term on the wall distance, a differential form
of the length-scale correction was proposed by Iacovides and Raisee [29]

S� =[NYP]=max[C�F(F+1)2�̃2/k,0] (20)

where

F={[(��/�xi )(��/�xi )]1/2−(dle/dy)}/cl (21)
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represents the difference between the predicted length-scale gradient with �=k3/2/�̃ and the
‘equilibrium length-scale gradient’, dle/dy, defined by

dle/dy=cl [1−exp(−B�Rt )]+B�cl Rt exp(−B�Rt ) (22)

where cl =2.55, B� =0.1069, and C� =0.83.
In order to reduce the amount of correction in the regions of high 
, a modified version of the

Iacovides and Raisee [29] differential correction term was proposed by Craft et al. [27], where the
coefficient C� is taken as

C� = 0.83min(1, R̃t/5)

[0.8+0.7(
′/3.33)4 exp(−R̃t/12.5)]
(23)

where the quantity 
′ is defined in the same way as 
 but, to enhance stability, the Kolmogorov
timescale is used as a lower limit on the timescale k/�̃ employed in the expressions for S̃ and �̃,
in a manner similar to the proposal of Durbin [30]:

S̃=max[k/�̃,√�/�]√0.5Si j Si j , �̃=max[k/�̃,√�/�]
√
0.5�i j�i j (24)

The limited R̃t -dependent damping is included for numerical stability.

5. NUMERICAL METHODS

The general form of the governing equations of mean flow and turbulence is written as

�
�t

(��)︸ ︷︷ ︸
Unsteady

+ �
�x

(��U )+ �
�y

(��V )︸ ︷︷ ︸
Convection

= �
�x

(
��

��

�x

)
+ �

�y

(
��

��

�y

)
︸ ︷︷ ︸

Diffusion

+ S�︸︷︷︸
Source

(25)

where x and y are the coordinates in the stream-wise and cross-stream directions, respectively,
and � represents the velocity component (U and V ) and turbulence quantities (k and �). �� is an
effective diffusion coefficient and S� denotes the total source term in each transport equation.

In the present study, the governing equations are solved using the finite volume methodology in
a semi-staggered grid system. In such a grid distribution, both velocity components (U and V ) are
computed and stored in the same nodal position and the velocity nodes are located at the corners of
the scalar control volume. Thus, only two sets of control volumes are needed for the computations.
The pressure field is linked to that of velocity through the well-known SIMPLE pressure-correction
algorithm. To avoid stability problems associated with pressure–velocity decoupling, the Rhie and
Chow [31] interpolation scheme is also employed. A bounded third-order QUICK differencing
scheme, developed by Iacovides [32], is employed for the approximation of the convective terms
in all transport equations.

In the QUICK scheme, depending on the flow direction, the value of unknown dependent variable
� at each face of control volume is evaluated from a quadratic polynomial that passes through

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1232–1263
DOI: 10.1002/fld



TWO-DIMENSIONAL PREDICTION CONFINED IN A CHANNEL 1241

Figure 2. The QUICK scheme: (a) Fe>0 and Fw>0 and (b) Fe<0 and Fw<0.

a grid point downstream and two grid points upstream of each face. For example, as shown in
Figure 2, the value of � at the east face of control volume � on a uniform grid is obtained by

�e=
{

�P +Q+
e , Fe>0

�E +Q−
e , Fe<0

(26)

where �P and �E are the values of upwind approximation and QUICK scheme corrections Q+
e

and Q−
e are expressed as:

Q+
e = 1

8 [−�W +3�E −2�P ] (27)

Q−
e = 1

8 [−�EE +3�P −2�E ] (28)

In the unsteady calculations, the time derivatives are approximated using the second-order
Crank–Nicolson [33]. Obviously, the time step in the time-marching calculation of vortex-shedding
flow is an important parameter. If a very large value is chosen, the global accuracy may be seriously
affected. The predicted stream-wise velocity at six locations obtained from unsteady computation
with the linear k–� model for dimensionless time steps �t∗ =H �t/Uin=0.002,0.001,and 0.0005
are shown in Figure 3. Within the wake region at x/D=1.0 and x/D=1.5, while some differences
are observed between profiles obtained with �t∗ =0.002 and 0.001, predictions with a smaller time
step of �t∗ =0.0005 do not significantly differ from those of �t∗ =0.001 . Moreover, with reference
to the methodology discussed in Richmond-Bryant [13], global relative two-norm error for stream-
wise velocity is calculated for 5000 points located in the region −1�x/D�3, 0�y/D�1. The
error resulting from increasing the time step from �t∗ =0.001 to �t∗ =0.002 is 6.03×10−4, and
from �t∗ =0.0005 to �t∗ =0.001 is 2.06×10−4. Thus, the results presented here, which have been
obtained with �t∗ =0.001, are sufficiently accurate. The convergence ratio based on the global
error norm is 0.34. This indicates that the time-step convergence is monotonic.

As shown in Figure 4, the grid used for computations consists of (105×102) grid nodes in the
stream-wise (x) and cross-stream (y) directions, respectively. For this grid, the y+ values for the
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Figure 3. Comparison of stream-wise velocity profiles for various time steps.

near-wall nodes are less than unity. To assess the accuracy of the results presented in this paper,
a series of grid-independence tests have been carried out using several grids for the linear k–�
model. In Figure 5, the stream-wise velocity profiles at six stream-wise locations for three different
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Figure 4. Computational grid with 105×102 nodes in the stream-wise and cross-stream
directions (�=7% and Re=2.2×104).

meshes including 105×102 (the main mesh utilized in this study), 85×82, and 145×138 are
represented. While some differences are observed between results obtained with the 85×82 mesh
and those of the 105×102, further grid refinement does not alter the velocity field predictions.
In addition, global relative two-norm error resulting from changing the mesh from 105×102
to 85×82 is 3.87×10−3, and from 145×138 to 105×102 is 1.63×10−3. Thus, these results
show that the grid used in the present study is sufficiently fine to produce accurate results. The
convergence ratio based on the global error norm is 0.42. This indicates that the grid convergence is
monotonic.

6. BOUNDARY CONDITIONS

No-slip boundary conditions are used at the solid walls. In accordance with the experiment of
Lyn et al. [7], a uniform flow with bulk velocity Uin is assumed for the inlet of the channel.
The inlet turbulent kinetic energy is set to kin=(0.02Uin)

2, while the dissipation is obtained from
�in=k3/2in /� where �=0.2D. For this configuration, as indicated in a number of numerical studies
such as Rodi [20], choosing �t/�=10 for the inlet flow leads to numerical results consistent
with the experimental data. In the present study, an inlet lengthscale �=0.2D is chosen, which
using the turbulent viscosity expression �t/�=C��k1/2/� with kin=(0.02Uin)

2, C� =0.09, and
Re=UinD/�=22000, results in a value of �t/� of 7.92.

At the outlet boundary, a zero gradient boundary condition is used for k and �. For U , a
convective-type boundary condition of the form

�U
�t

+Uin
�U
�x

=0 (29)

is used, while the cross-stream component (V ) is set to zero.
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Figure 5. Comparison of stream-wise velocity profiles for various meshes.

Since there is a pressure drop along the channel, the output pressure is set equal to sum of the
pressure of the upstream nodes and a uniform bulk pressure correction ppd. A uniform pressure
difference, denoted as ppd below, is imposed across the exit plane, the value of which is determined
iteratively, through the overall mass balance. More specifically, at each iteration, a correction to
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the exit plane pressure difference, denoted by pppd, is computed from the difference between the
inlet and outlet flow rates as shown by the following equation:

pppd= ṁ−∫A �UNi−1dA∫
A �DUNi−1dA

(30)

where ṁ represents the inlet mass flow rate.
This correction, is then under relaxed, using the factor urfp, and added to the overall exit-plane

pressure difference, as shown in the following equation:

ppd=ppd−urfp×pppd (31)

When convergence is reached, pppd becomes zero and ppd remains unchanged and provides the
difference between the pressure of the exit nodes (Ni) and that of the nodes at the upstream line
(iN−1), as shown by the following equation:

PNi = PNi−1+ppd (32)

The U -velocities at the upstream nodes (iN−1) are subsequently corrected, at each iteration, by
the following relation:

UNi−1=UNi−1+DUNi−1pppd (33)

7. RESULTS AND DISCUSSION

This section examines the effectiveness of the two low-Re k–� models (described in Section 4)
in reproducing characteristics of unsteady turbulent flow around a square obstacle. Here, the
steady state results are also included as a set of baseline predictions. The predicted streamlines
resulting from steady-state computations and using the linear and non-linear low-Re k–� models
are presented in Figure 6. The steady flow simulation shows that the flow separates at the leading
edges of the cylinder forming two intense recirculation bubbles on the top and bottom surfaces of
the obstacle. Downstream of the obstacle, a pair of large and symmetric counter rotating vortices
is formed. Experimental evidence (e.g. [6, 7]) suggests that such behavior (steady and symmetric
vortices) is not physically correct at high-Reynolds number flows. The length of the recirculation
region obtained from the non-linear k–� model calculation is shorter, but wider than that obtained
using the linear k–� model, which is more consistent with the experimental results.

In the present study, the steady solution is used as an initial condition for the unsteady compu-
tations.

The results of unsteady computations obtained using the linear and non-linear low-Re k–�
models (during one period of vortex shedding ()) are presented in Figures 7 and 8 in terms of
streamlines (−10000<�<10000). The period of vortex shedding () is obtained by calculating
the time difference between two consecutive peaks in the time history of stream function in a point
located in the unsteady wake region. It can be seen that at t/= 1

20 there is an anti-clockwise vortex
in development at the lower base corner, being fed by the separation at that corner. As it grows,
with increasing strength but being rather fixed in position, the reattachment point on the rear side
is being pushed upwards. When the attachment point reaches the upper base corner at t/= 7

20 , a
new clock-wise vortex is about to be formed at that corner, which thereafter feeds its circulation.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1232–1263
DOI: 10.1002/fld



1246 M. RAISEE ET AL.

x/ D

y/
D

-1 0 1 2 3 4
-1

-0.5

0

0.5

1
Streamline

x/ D

y/
D

-1 0 1 2 3 4
-1

-0.5

0

0.5

1
Streamline

(a)

(b)

Figure 6. Streamline contours obtained from steady computations using: (a) non-linear k–� model and (b)
linear k–� model (�=7% and Re=2.2×104).

As this new vortex grows, the old vortex is being pushed away from the obstacle and is eventually
shed to the wake. In general, the same trend occurs in the other periods. A comparison between
the streamlines of the instantaneous flow field, predicted by the linear k–� in Figure 7, and those
of its non-linear counterpart of Figure 8, shows that while the two models predict a similar overall
flapping motion, the linear k–� predicts a more intense flow separation behind the block, which
extends further downstream. These differences and their cause are discussed further in subsequent
comparisons.

In Figure 9, the steadyU -velocity predictions of the linear k–� model and unsteady computations
of time-averagedU -velocity with both linear and non-linear k–�models are presented and compared
with the experimental data of Lyn et al. [7]. It should be mentioned that since the actual flow
is unsteady, the statistical values are obtained by post-processing of the measured instantaneous
velocity field. The time-averaged profiles obtained via time-averaging process over one period are
directly comparable with the measured counterparts.

From the six stations shown in Figure 9, two locations (x/D=0.0 and 0.5) are chosen to be on
top of the obstacle, two locations (x/D=1.0 and 1.5) are within the recirculation region to study
the flow behavior in the unsteady wake region and the remaining two stations (x/D=3.0 and 4.0)
are in the recovery region to see how well the turbulence models perform in this region.

Over the top surface of the obstacle at x/D=0.0 and x/D=0.5, and also at the first station
within the wake, i.e. x/D=1.0, there are only small differences between the steady and unsteady
flow predictions of the time-averaged U -velocity, though the results returned from the unsteady
predictions are generally in better agreement with the experimental data. At the second station
within the wake, i.e. at x/D=1.5, the differences between the steady and unsteady predictions now
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Figure 7. Predicted stream lines of instantaneous flow field at one period and at 10 different times using
the linear k–� model (�=7% and Re=2.2×104).

become larger and, while the steady computations fail to capture the experimental data, the time-
averaged velocity profile obtained with the unsteady flow simulation is in reasonable agreement with
the experimental data. Further downstream at x/D=3.0 and 4.0, there are significant differences
in predicted time-averaged U -velocity profiles with steady and unsteady computations. As can be
clearly seen, in the unsteady flow simulations, the additional flow mixing, which results from the
vortex shedding behind the block, leads to a faster recovery in the wake flow. This significantly
improves the predictions of the time-averaged velocity field, bringing the numerical results obtained
from the unsteady computations to close agreement with the measurements. It is noted that the
non-linear k–� model, in closer accord with the measurements, returning a faster recovery of the
wake region downstream of the obstacle, a feature consistent with the comparisons of the predicted
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Figure 8. Predicted stream lines of instantaneous flow field at one period and at 10 different times using
the non-linear k–� (�=7% and Re=2.2×104) model.

flow streamlines of the instantaneous flow field of Figures 7 and 8 and implies that the non-linear
model predicts a stronger mixing of the flow downstream of the square cylinder.

In Figure 10, the steady and unsteady flow predictions of time-averaged cross-stream velocity
at several locations are compared with the experimental data of Lyn et al. [7]. As also seen in
the previous figure, here again at the first station, i.e. x/D=0.0, there is little difference between
the steady and unsteady flow predictions, though some evidence of improvement in predictions is
visible in the unsteady flow computations. At the second station, i.e. at x/D=0.5, while the steady
flow computation severely under predicts the V -velocity, the unsteady flow solutions substantially
improve the predictions. Immediately after the block, x/D=1.0 and 1.5, where the vortex shedding
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Figure 9. Comparison of predicted stream-wise velocity profiles with experimental
data of Lyn et al. [7] (�=7% and Re=22000).

is at its strongest, in agreement with the experimental data, the unsteady flow computations return
higher levels of cross-stream velocity than the steady flow ones. Further downstream, x/D=3.0
and 4.0, where the flow oscillations, as shown in Figures 7 and 8, die down, the cross-stream
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Figure 10. Comparison of predicted cross-stream velocity profiles with experimental data
of Lyn et al. [7] (�=7% and Re=22000).

velocity also dies down and the differences between the steady and unsteady predictions decrease.
The faster recovery, predicted by the non-linear k–�, is also consistent with the fact that, as shown in
Figure 10, again in closer accord with the measurements, the non-linear model predicts a stronger
cross-duct motion within the vortex-shedding region (x/D=1 and 1.5).
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Figure 11. Comparison of predicted stream-wise intensity profiles with experimental data
of Lyn et al. [7] (�=7% and Re=22000).

Attention is now directed toward the prediction of turbulent quantities. In Figures 11, 12, and 13
the predictions of the steady linear k–� and unsteady linear and non-linear k–� models for stream-
wise (u′), cross-stream (v′) turbulence intensities and turbulent shear stress (uv), are, respectively
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Figure 12. Comparison of predicted cross-stream intensity profiles with experimental data
of Lyn et al. [7] (�=7% and Re=22000).

shown and compared with measurements of Lyn et al. [7]. It should be noted that in the unsteady
predictions the total stresses, resolved plus modeled stresses are shown. The resolved stresses are
obtained by post-processing the instantaneous velocity field, produced by the ensemble-averaged
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Figure 13. Comparison of predicted turbulent shear stress profiles with experimental data
of Lyn et al. [7] (�=7% and Re=22000).

mean flow equations, over a cycle. The modeled stresses are calculated by time averaging the
instantaneous Reynolds stresses, which result from the solution of the model equations, over a
cycle. Consequently, when the resolved component is a significant part of the total, it is possible to
predict a non-isotropic turbulence field, even with a linear k–� model. One interesting feature that
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can be observed from the experimental results for turbulence intensities is that, over the obstacle,
the stream-wise intensity is higher than the cross-stream intensity, while the reverse occurs within
the wake region downstream of the obstacle due to the presence of the flow oscillations in the cross-
stream direction. Thus, the flow under investigation demonstrates significant turbulence anisotropy.
It is clear that the three measured components of the Reynolds stress tensor (especially the cross-
stream component) are seriously under predicted by the steady flow simulations. The unsteady
flow predictions of the three measured Reynolds stresses, on the other hand, probably due to the
additional contribution of the resolved components, are substantially closer to the data than the
corresponding steady flow profiles. Nevertheless, significant discrepancies between the predicted
by using unsteady linear k–� model and measured still remain, especially for the cross-stream
intensity. Thus, it appears that, similar to what is observed in the mean velocity comparisons,
the unsteady solution of the governing equations does also lead to improvements in prediction of
turbulence quantities.

These findings are in line with those of earlier studies, discussed in Section 1, which will suggest
that the remaining differences seen between the predictions and measurements, especially in the
case of turbulence quantities, must be due to weaknesses of the turbulence model in general and
in particular the effective viscosity approximation.

While the linear k–� model, even in unsteady computations, still under estimates the turbulence
quantities, the non-linear k–� model produces higher turbulence intensities and turbulent shear
stress levels, which are also very close to the measured levels. The improvements in the predictions
are especially evident in Figure 13, where at all locations (especially within the wake at x/D=1.0
and 1.5) introduction of the non-linear k–� model results in very close agreement between predicted
and measured turbulent shear stresses.

The predicted distributions of the time-averaged stream-wise velocity along the center-line of the
channel, using the linear and non-linear k–� models, are compared with the measurements of Lyn
et al. [7] in Figure 14(a). The U -velocity distribution predicted by the steady flow computations
and the linear k–� model is also included for baseline comparisons. From this figure several features
can be observed. In comparison with the experimental data, the steady flow computations with the
linear k–� model produce a substantially longer re-circulation region behind the block, followed
by a significantly slower recovery. This is of course consistent with the earlier comparisons. Also
consistent with the earlier comparisons is the fact that, in closer accord with the data, the unsteady
flow computations return a shorter recirculation length and a faster recovery and that the unsteady
flow, non-linear model computations are in very close agreement with the data. The most serious
discrepancy between the unsteady predictions and measurements occurs at the downstream of the
recovery zone (i.e. x/D>3.5), where both turbulence models (especially the non-linear k–� model)
over predict the measured values. As mentioned in the introduction, the flow considered here has
been also studied by Rodi [20] using several turbulence modeling approaches. In Figure 14(b),
predicted stream-wise velocity along centerline using the non-linear k–� model is compared with
those reported by Rodi [20] using LES, two layer Kato Launder (TL–KL) k–� model and the Kato
Launder k–� model with wall functions (KL k–� WF). As before practically all the differences
among the predictions occur downstream of the obstacle. The Kato–Launder model with wall
functions predicts a downstream separation bubble, which is about twice as long as the measured
one, while the two-layer version of the Kato–Launder predicts the correct length of the separation
bubble, but a wake recovery which is faster than that of the experimental data. The LES prediction
of the centerline variation of the mean velocity shows a stronger backflow than that measured
close to the downstream surface of the block, but further downstream they show the correct length
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Figure 14. Comparison between the predicted stream-wise velocity with experimental data of Lyn et al. [7],
LES and KL k–� results [20] along the horizontal center-line of the channel (�=7% and Re=2.2×104).

of the separation bubble and wake recovery. A little surprisingly perhaps, the non-linear model of
the present study returns a mean flow evolution that is closer to the measured development than
even that predicted by the LES approach.

In Table III, the recirculation lengths predicted by computations of the current study are compared
with those of Rodi [20] and with the measured value of Lyn et al. [7]. The unsteady predictions of
the recirculation length by the Launder–Sharma k–� model and the Kato–Launder k–� model with
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Table III. Comparison of recirculation length predicted
with turbulence models.

xr/D

Exp. (Lyn et al. [7]) 1.37
Unsteady linear model 2.3
Unsteady non-linear model 1.25
Steady linear model 4.04
LES UKAHY2 1.38
TL–KL k–� 1.27
KL k–� WF 2.1

wall functions are close to each other and both models overestimate the length of recirculation
bubble. On the other hand, the unsteady predictions of the non-linear k–� model and the two-layer
Kato–Launder k–� model are more accurate and both are lower than the measured value. Among
the predictions presented in Table III, as expected, the worst prediction of recirculation length is
returned by the steady computations with the linear k–� model, while the best result is returned
by the LES of Rodi [20].

In Figure 15(a), the predicted distributions of the time-averaged total turbulent kinetic energy
along the symmetry plane of the channel, resulting from unsteady computations with the linear
and non-linear k–� models, are compared with measurements of Lyn et al. [7]. The k distri-
bution predicted from the steady computations and the linear k–� model is also included for
comparison.

Experimental results reveal that the turbulent kinetic energy rises from zero to its peak value
within the wake and then slowly decreases with the development of the flow in the stream-wise
direction. It can be observed that both the steady and unsteady computations capture the trend in the
k distribution. However, consistent with the results shown in Figures 11 and 12, the centerline levels
of turbulence of the steady flow computations of the linear k–� are well below the measured values.
The unsteady flow computations, using the linear k–� model, return substantially higher k levels.
The overall shape of the k distribution is better predicted, but just behind the block, peak levels
are still under predicted by about 50%. Introduction of the non-linear model to the unsteady flow
computations further increases the predicted turbulence levels within the wake region. Moreover,
the location of the peak value of k as well as the overall distribution is now in excellent agreement
with the measurements.

In Figure 15(b), corresponding comparisons between the predictions of the non-linear model
of the present study with those reported by Rodi [20] are presented. Both versions of the Kato–
Launder model over predict the centerline k levels over most of the region downstream of the
block. The wall-function version predicts a more gradual rise of centerline k after the block with
the peak value further downstream than measured peak level, while the two-layer version predicts
the correct location at which k reaches its peak value, but over predicts the k level at the peak
location and also over the region downstream of it. The LES predicted k variation, while closer
to the data than the two Kato–Launder model predictions show two major deficiencies. The peak
level is higher than that measured and closer to the block and while in the initial recovery region
(2<x/D<3) the k levels are well predicted, further downstream (x/D>3) the predicted levels
do not fall as rapidly with downstream distance as the measured ones. As was also noted in the
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Figure 15. Comparison between the predicted turbulent kinetic energy with experimental
data of Lyn et al. [7], LES and KL k–� results [20] along the horizontal center-line of the

channel (�=7% and Re=2.2×104).

corresponding mean velocity comparisons of Figure 14(b), the centerline k variation returned by
the non-linear k–� model is closer to the measured variation than even that of the LES approach.

The comparisons of Figures 10–15 suggest that the non-linear k–�, when used in the 2-D URANS
computations of flows around square cylinders, return higher turbulence levels and also a stronger
cross-stream motion downstream of the block than the linear model. This in turn results in a faster
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Table IV. Comparison of Strouhal number and drag
coefficient predicted with turbulence models.

St CD

Exp. (Lyn et al. [7]) 0.132 2.1
Unsteady linear model 0.115 1.99
Unsteady non-linear model 0.126 2.12
Steady linear model — 0.16
Steady non-linear model — 0.19

flow recovery in the downstream region. The flow behavior predicted by the non-linear k–� within
the 2-D URANS framework is in close accord with the measured time-averaged motion. Indeed
comparison with earlier attempts shows that the non-linear two-dimensional URANS predictions
of the time-averaged flow are as close to the measurements as earlier LES predictions and superior
to those of other URANS computations. This close agreement suggests that on the one hand the
large-scale unsteady motion that results from a flow around a cylinder is mainly two-dimensional,
and on the other hand that it can only be successfully predicted (with URANS) with turbulence
models that take into account the anisotropy of turbulence.

From the practical point of view, two of the most important parameters for engineering appli-
cations of unsteady flow around bluff bodies are the Strouhal number and drag coefficient. The
predicted values for these parameters, using turbulence models used in this work, are compared
with experimental data of Lyn et al. [7] in Table IV. Starting with the drag coefficients obtained
from the steady solutions, as expected, these are substantially lower, less than 10%, than the value
of the measured drag coefficient. These large disparities between the steady-state predictions and
the measurement suggest that the vortex shedding behind the obstacle makes the largest contri-
bution to the drag coefficient. Therefore, many studies have focussed on the ways to control and
suppress the vortex shedding in the positions where great value of drag force is unfavorable. The
2-D URANS comparisons show that the predicted values for both the Strouhal number and the drag
coefficient, using the two turbulence models, are close to the measured values. For the unsteady
flow linear model computations, the predicted Strouhal number is 12.8% lower than that of the
experiments and the drag coefficient is 5.2% lower. The corresponding figures for the unsteady
flow non-linear model computations are 4.5% lower and 1% higher, respectively, providing further
evidence of the superiority of the non-linear model. The uncertainty value for Strouhal number in
the experimental results is quoted as 3%.

Finally for the non-linear model, Figures 16, 17, and 18 demonstrate the separate contributions
of the resolved and modeled components of Reynolds stresses to the total stress, which is also
compared with the experimental data. As can be noted, the resolved component makes an important
contribution to the total level, not only for the normal stresses, but also for the turbulent shear
stress. The latter is an indication that the unsteady motion enhances the mixing of momentum and
explains why it is necessary to employ URANS for the computation of such flows.

8. CONCLUSIONS

In this paper two low-Reynolds number k–� models have been employed to compute unsteady
turbulent flow around a square cylinder confined in a channel. The results presented show that,
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Figure 16. Contributions of the modeled and resolved components to the total
stream-wise normal Reynolds stress.

as expected, the steady solution of governing equations does not produce accurate predictions of
the time-averaged flow and it becomes necessary to perform unsteady 2-D calculations for more
reliable predictions of these flows. This suggests that large-scale unsteady flow structures make a
significant contribution to the mixing of momentum.
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Figure 17. Contributions of the modeled and resolved components to the total
cross-stream turbulent normal stress.

Use of the 2-D URANS approach, as also found in earlier studies, leads to a significant
improvement in the predictions of the time-averaged flow and turbulence fields and also of global
parameters such as the drag coefficient and the Strouhal number.
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Figure 18. Contributions of the modeled and resolved components to the total turbulent shear stress.

Even within the 2-D URANS strategy, however, the low-Re linear k–� model tested, showed
predictive deficiencies, such as a slow mean flow recovery downstream of the obstacle, under-
predicted cross-stream mean motion, and also under-predicted turbulent stresses in the wake region.
Introduction of the Craft et al. [22] non-linear version of the low-Re k–� model brought the
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time-averaged 2-D URANS computations to close agreement with corresponding local and global
measurements. This suggests that the large-scale flapping motion behind the square cylinder is
mainly two dimensional and also that the flow evolution is strongly influenced by the anisotropy
of the turbulence field. The latter makes it necessary to use turbulence models that account for
the effects of turbulence anisotropy. Consequently, further work must also explore the use of
second-moment closures.
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